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Abstract 

The internal strain parameter (or the bond-bending 
parameter) of zinc-blende-structure materials can be 
obtained from the stress dependence of the intensity 
of weak reflections in uniaxially stressed crystals. The 
theory, including dispersion and temperature effects, 
is presented and applied to the reanalysis of earlier 
work on gallium arsenide. The results are inconsistent, 
leaving the bond-bending parameter of this material 
unknown. 

I. Introduction 

The structural similarity of diamond and zinc blende 
makes it natural to turn from silicon (Cousins, 
Gerward, Olsen, Selsmark & Sheldon, 1982) and 
germanium (Cousins, Gerward, Nielsen, Olsen, 
Selsmark, Sheldon & Webster, 1982) to materials that 
crystallize in the zinc blende structure. 

In this paper the opportunity is taken to show how 
the internal strain parameter /7, may be extracted 
from observations of the stress dependence of the 
intensities of X-ray reflections. Since there are no 
strictly forbidden reflections in the zinc blende struc- 
ture the dispersion corrections to the atomic scattering 
factors must be fully included. This is particularly 
important in the case of the h + k + l = 4n + 2 class of 
reflection, where, under certain conditions, the 
intensity of a reflection can be due almost entirely to 
the difference between the imaginary parts of the 
dispersion correction. The inclusion of dispersion 
provides independent determinations of [,41 and ,4 
from one data set, in contrast to the diamond case 
where only [fi,[ is found. 

The theory is applied to a reanalysis of earlier work 
on gallium arsenide by Koumelis & Rozis (1975, 
hereafter denoted KR) and Koumelis, Zardas, 
Londos & Leventouri (1976, hereafter KZLL). They 
appear to have incorporated neither temperature fac- 
tors nor dispersion corrections. When these omissions 
are rectified it is found that the resulting value of [,41 
(or, equivalently, the bond bending parameter ~') is 
increased by about 50%. On the other hand, the value 
of ,g, is found to be ten times smaller and not incon- 
sistent with the value zero. This in turn would imply 
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vanishing dispersion corrections, for which there is 
no evidence. The reason for this is unknown. 

2. The internal strain tensor in the zinc blende structure 

The internal strain tensor in the zinc blende structure 
has the same form as the one in the diamond structure, 
namely 

0 0 0  

A = A a  0 0 0 1 , (1) 

0 0 0 0 

where a is the lattice parameter and A is the single 
dimensionless measure of internal strain. 

If a uniaxial stress o" (positive if tensile) is applied 
parallel to the unit vector I = [11, 12, 13] its components 
are given, in both contracted and uncontracted nota- 
tion, by 

o"!,: = o" o = l, ljtr, (2) 

where K is the Voigt contraction of ij. 
The inner displacement of the two sublattices under 

stress is then given by 

8i = AijSjKCrK, (3) 

where S is the compliance matrix of the crystal. From 
(1) and (2), (3) takes the form 

62 = .AaS44crl1311 | .  (4) 
'~3 L l112A 

3. Effect of  inner displacement on the structure factor 

In earlier work on germanium we corrected the free- 
atom scattering factors by including the real part of 
the anomalous dispersion correction using f ' =  
fo  + Af ' ,  where /If' was obtained from the tables of 
Cromer & Liberman (1970) by interpolation. Neglect 
of Af" led to less than 0-6% error in our final result. 
In the present work we include the imaginary part of 
the anomalous dispersion correction, writing f "  in 
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place of the usual A f " .  Thus the atomic scattering 
factor is now 

f,~ = f "  +/f~, (5) 

where a = 1 corresponds to the cation (situated at the 
origin) and a = 2 corresponds to the anion {situated 
at p = (a/4)[ l ,  1, 1]}. The structure factor for Bragg 
diffraction from planes whose reflection vector is H is 

Fn =4[f~ +f2 exp (2zriH. p)] (6) 

and the square of the structure factor in the unstressed 
crystal takes the form 

where 

Fnl2= 16{(f,12 +f~,z)+(f~2 +f~2) 

+2c, cos gn +2c2 sin gn}, (7) 

7/" 
Xn = 27rH. p =-~(h + k + 1), 

ci = f~f~ " " ) + f 2 f ,  

and I (8) 
,,, _ f t  f t t  f t t  f t  
t"2 ~ J 2 J  i ~ J 2  J ! 

and the subscript zero denotes the unstrained crystal. 
Under uniaxial stress the phase XH is replaced by 

Xn + 0H(I), where 

with 

0n(l) = yn(l)o" (9) 

yn(l) = 27rfi, S44(h1213 + kl31, + H, 12) (10) 

and where the stress axis is ! =[I~,/2,/3]. The effect 
of inner displacement is to increase the square of the 
structure factor by 

A IFH(l)l= = 32Cl{COS [Xn + 0n(I ) ] -  cos Xn} 

+ 32c2{sin [XH + 0n(I)]-- sin XH}. 

Since 0H(I) is a small quantity the terms in gn + 0n(i) 
may be expanded with the result that, to second order 
in 0H(I) and thus also in tr, 

a I F . O ) I  ~ = - 16{(c, cos XH + C2 sin/I(H)[ I / / H ( | ) ]  2 

+2(c~ sin X n -  c2 cos Xn)On(l)}. (11) 

If Pno is the intensity of a particular reflection in an 
unstressed crystal and APn(o', 1) is the change in 
intensity due to uniaxial stress, (11) can be rearranged, 
using (7) and (9), to give 

1 APn(tr , 1) 1 
~(Cl COS Xn + c2 sin Xn)[yn(l)]Ztr 

o" Pno 

2 
--S-(Cl sin Xn-C2 cos Xn)yn(l), (12) 

ai 

where di=-lFul~,/16 has the forms 

d0=(f~ +f~)2+(f] ,+f~)2 i fh + k + / = 4 n  

d~ =(f~ _f~)z +(f~ +f~,)2 if h + k  + / = 4 n  +1 

d 2 = ( f ] - f ~ ) 2 + ( f ~ - f ~ )  2 i f h + k + l = 4 n + 2  (13) 

and 

d~=(f',  +f~)2 +(f'2-f]')2 i f h + k + / = 4 n + 3 .  

The di are always positive definite and there are no 
strictly forbidden reflections. Equation (12) is there- 
fore the basis for analysing the stress dependence of 
any reflection from a zinc blende crystal. It yields two 
pieces of information: 

1 
m = - ~ ( c l  cos XH + C2 sin Xn)[yn(l)] 2 (14) 

and 

2 
I - ~ ( c ~  sin Xn-- C2 COS XH)YH(I), (15) 

both of which depend on A. We see from (10) that 
yo(1) = -yn( l )  and therefore that the sign of I depends 
on the sign of A. Since fi, has been chosen to represent 
the internal strain of the anion relative to the cation 
it is essential that the polarity of the crystal sample 
be determined so that the reflection H can be distin- 
g_uished from the reflection Id and the correct sign of 
A can be unambiguously determined. In Fig. l(a) we 
show (12) for a pair of reflections and in Fig. l(b) 
the way in which a value for A is most easily deduced. 
The ordinate is S =  Iml '/2 and the abscissa is L We 
list in Table 1 relevant expressions for the different 
classes of reflection. An experimental run on a specific 
reflection leads to a rectangular box in Fig. 1 (b). From 
the geometry of the reflection and stress axis (10) can 
be used to provide a locus of compatible I, 1 values. 
The origin corresponds to 1,41 = 0 and the end point 
to ]/] = ¼ (i.e. a bond-bending parameter ~" = 1). If the 
line fails to intersect the box the experimental and 
theoretical results are incompatible. Conversely, if 
they intersect the magnitude and sign of ,4 can be 
deduced by direct proportion. 

Appropriate temperature factors must be included 
in f~ and f2. It is possible that two further factors may 
have an effect. These are the degree of ionicity and 
the shape, position and amount of bond charges. In 
this preliminary account only the temperature factors 
will be discussed. 

3.1. Temperature factors 

Each scattering factor should be modified by a 
factor that takes into account the thermal vibrations 
of the crystal. Thus, where f~ appears earlier it should 
be multiplied by T,~, where 

T,, = exp [-B,,(sin 0/A)2]. (16) 
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Table 1. Factors governing the change of intensity of  the hkl reflection in the zinc blende structure resulting from 
uniaxial stress o- acting in the direction ! = [ln, 12,/3] 

-- ~bH(! ) is given by e q u a t i o n  (9), yn( l )  by  (10), c~ by  (8) and  d, by (13). 

Ref lec t ion  type  
h + k +1 cos XH sin XH IF  HI0 2 AIFH(I)I 2 S/lYH(l)l I / y H ( I )  

4n 1 0 16d o - 16(c I ~b 2 - 2 c 2 0  ) (c|/do) 1/2 2C2/do 
4n + 1 0 1 16d I -16(C2lk 2 + 2 C 1 ~ )  (Ic21/d|) 112 - 2 c l / d  t 
4n +2 - 1 0 16d 2 16(c~ 0 2 -  2c2~b ) (cl/d2) 1/2 -2c2 /d  2 
4n +3 0 -1 16d 3 16(c2~ 2 + 2 c ~ )  (Ic2l/d3) '/2 2%/d  3 

Reid (1983) has recently published Debye-Waller  
factors of zinc-blende-structure materials based on 
lattice dynamical calculations. He includes references 
to recent experimental results for the B,~. 

In an approximation that treated the vibrations 
through a mean value of B all the factors relevant to 
the stress dependence of the intensity, such as the ci 
and the d~, would be modified in the same way. If, 
however, as seems physically more realistic, we use 
distinct temperature factors T~ then the ci have one 
form of dependence, for example, 

/ t  t t  

c1 = (fb¢~ + f ,  f2) T, 7"2 (17) 

whilst the d~ have a different dependence, for example 

d2 = (f'l T~-f~ T2) 2 + ( f ~ T n - f ~  T2) 2. (18) 

I AP 

J 
compressive stress 

~ P o  

tensile stress o 

(a) 

S 

" ' .0 .25 0.25 "" 

o.o  \ o/o.o  

(b)  

Fig. 1. ( a )  T h e  var ia t ion  o f  ( l / q )  [AP(c r ) /Po]  as a func t ion  o f  cr 
fo r  (i) a ref lect ion H and  (ii) a ref lect ion H.  (b)  Plot  o f  pa r ame te r s  
de r ived  f r o m  (a )  enab l ing  Ifi, I and  fi, to be  re la ted  to a locus  o f  
theore t i ca l  values .  

Table 2. Atomic scattering factors, dispersion correc- 
tions and derived functions for GaAs 

T e m p e r a t u r e  fac tors  and  d i spe r s ion  cor rec t ions  are omi t t ed  f rom 
the va lues  in pa ren theses .  

K R  K Z L L  

f °  (Ga) 14.613 14.613 
Af'~ -0.8548 -0.8158 
f'~ 13-758 13.797 
f~' 0.9816 1.0154 
f~ (As) 16.194 16" 194 
Af '  2 -0.5620 -0.5290 
f~ 15.632 15.665 
f~ 1-2690 1-3123 
d 2 3-8675 (2-500) 3-8568 
c t 151-66 (236.64) 152.47 
c 2 - 1.4819 (0) - 1.5424 

The temperature factors therefore influence both S 
and I in Table 1 and produce a distinct theoretical 
line in Fig. l(b). 

4. Reanalysis of earlier work 

The theory presented in KR is in error in small details 
and incorrect values of ~" (i.e. - 4 A )  are shown in their 
Table 2. A factor of 3/2 was omitted and an incorrect 
value of San was used. The final corrected value was 
published as ~'= 0.77 (4). This value is just a little 
larger than the values for silicon and germanium and 
thus appears quite reasonable. However, when we 
examine the expression used for AJ/J  (i.e. our AP/Po) 
it is clear that dispersion corrections have not been 
included and there is no evidence that temperature 
factors have been considered. 

In KZLL the theory has been corrected but again 
only the h = 0 scattering factors have been employed. 
A value ~" = 0.764 (9) is found. 

It is possible to reanalyse the data in these two 
papers. The values of J are given in KR but have to 
be deduced from accurate measurements on Fig. 2 in 
KZLL. Equation (12) is the basis of analysis and we 
assume 

1 AJ 
- -  $ 2 o  r + L (19) 

,rJo 

The initial value of Jo is scanned and corresponding 
values of S 2 and I are obtained from a least-squares 
fitting routine. The value of Jo corresponding to the 
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best fit should be preferred to an experimental value 
when a strong reflection is under consideration. This 
is because the theory relates to an ideally imperfect 
crystal, the state to which the crystal tends on applica- 
tion of stress. The stress-free state may, in the case 
good crystals, correspond to the ideally perfect crys- 
tal. In the present case, however, the reflection is weak 
and the stress-free case is well represented by the 
ideally imperfect crystal. 

The analysis in KR permits a value of ~" to be 
calculated for each data point and the final result is 
a weighted mean. So great is the range of the weight- 
ing factors that the final value is totally dominated 
by the point of highest stress. This is unfortunate 
because the intensity at stresses near to the breaking 
stress is often depressed due to the onset of damage 
in the crystal. 

Since the polarity of the sample was irrelevant to 
the analysis originally undertaken we shall assume 
that both pieces of work refer to observations of the 
006 reflection for which sin O/h = 0.53065 ~-~. The 
Debye-Waller  factors deduced from the figures and 
tables in Reid (1983) are B~=0.6853 and B2= 
0-5758 A2 at 295 K. These lead to temperature factors 
T~ =0.8245 and T2=0.8503. The stress axis is [l 1 l] 
in KR and Y0o6 takes the value 0.2126,E,. In KZLL 
there are two possibilities for the stress axis: either 
[ l l0 ]  with Yoo6=0-3188 .,~ or I l l0 ]  with Yo06 = 
-0.3188 ,~. The evidence of this analysis suggests the 
second of these, as this choice leads to A having the 
same sign in both KR and KZLL. The atomic scatter- 
ing factors f o  are taken from International Tables of 
X-ray Crystallography (1974) using the analytical 
approximations of Table 2.2B. These are displayed 
in Table 2 which also includes the dispersion correc- 
tions, calculated from a program of Cromer & 
Liberman (1970), appropriate to the energies 
7"0580 keV (Fe Kfl) in KR and 6.9255 keY (Co Ka) 
in KZLL. The derived functions dE, C 1 and c2 are 
given together with the values they would have if 
dispersion and temperature were neglected. 

In Table 3 the experimental and theoretical values 
of S and I are listed together with the values of [,g,[ 
and .4 deduced therefrom. The lack of polarity infor- 
mation means that it is not known whether ,4 relates 
to the internal strain of As with respect to Ga or vice 
versa. In Figs. 2(a) and (b) the results are plotted in 
the manner of Fig: l(b). 

The results in which dispersion and temperature 
are neglected agree with KR and KZLL and confirm 
the supposition of neglect. The errors assigned here 
are larger than those cited in the previous works and 
are based on estimates of the sensitivity of the values 
of S 2 and I to the initial value of Jo. 

The results of the reanalysis including dispersion 
and temperature are strange and inconsistent. The 
values derived from S are 50% higher than the pub- 
lished values. A value of about unity for the bond- 

Table 3. Experimental and theoretical values of S and 
I, and the derived values of the internal strain parameter 

and the bond-bending parameter 

The second line o f  each S set contains no tempera ture  or dispersion 
correct ions.  Units o f  S and I:  10 -9 Pa-~. 

Experiment Theory I,~1 I~1 
KR 0.40 (8) 1.3313 I,~1 0.30 (6) 1.20 (24) 

2.068 I,il 0.19(4) 0.77 (16) 
KZLL 0.54 (4) 2.00441,41 0.27 (2) 1.08 (8) 

3.102 I,il 0.17 (1) 0.70(4) 

Experiment Theory ,~ ~" 
KR 0.004 (14) -0.1629,4 -0.03 (9) 0-I (3) 
KZLL -0-008 (8) 0-2550 ,~ -0.03 (3) 0. l (I) 

bending parameter is not impossible but a recent 
theoretical calculation (Cardona, Kunc & Martin, 
1982) puts the value at ~" = 0.72. The values deduced 
from I are a factor of ten lower and the errors are 

-large enough for consistency with a value zero. The 
implication of this is that the dispersion corrections 
are zero. Although the observations are made well 
below the Ka  absorption edges of gallium and arsenic 
there is no reason to suppose that the small remaining 
contributions to /t f ;  and/ i f , "  are spurious. 

It could be that other factors, neglected in this 
analysis, are important. So far it has been assumed 
that deformation has altered neither the electron dis- 
tribution, the dispersion terms nor the Debye-Waller  
factors. Since spherical form factors are used, some 
degree of inaccuracy is already present in the zero- 
stress case. This is confined principally to the valence 
electrons which are actually subject t o  sp  3 hybridiz- 
ation and possibly a small ionic charge transfer. These 
effects should be considerably less than 10%, the ratio 
of valence electrons to total electrons. Similarly, the 
dispersion terms are calculated for forward scattering 
and there is little knowledge of how they change when 

1.0 S/10-9 m2 N-1 S/10-9 m2 N-1 1.0 

0.75 0.75 

0.50 " " f ~ 5 ~  0.50 
+ I U'"'"" 0. 

0.25 ~ ! 2 5  0.25 

o , o.o5 - o l o 5  o 
1/10 -9 m 2 N-1 1/10-9 m 2 N-1 

(a) (b) 
Fig. 2. The results for GaAs plotted as in Fig. l(b). (a) for KR 

and (b) for KZLL. 
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the scattering angle 208 is non-zero. Nevertheless, 
these terms have proved satisfactory in many situ- 
ations and thus constitute a good approximation. The 
greater parts of the corrections here come from scat- 
tering from the L shells, which belong to the atomic 
cores, and should not be greatly affected by pressure. 
As far as the Debye-Waller  factors are concerned, a 
guess can be made for the effect of stress by comparing 
a fractional change in volume due to hydrostatic 
pressure with the same change due to temperature. 
A pressure of0-1 GPa at room temperature is roughly 
equivalent to a reduction of 80 K from room tem- 
perature. This latter change would reduce BI and B2 
by 32%, corresponding to an increase in T, and 7"2 
of about 6%. All in all, the factors neglected might 
mean an uncertainty of +5% in the values of S and 
I that are used to locate the end points (marked 0.25) 
of the theoretical lines in Fig. 2. The factors neglected 
are in no way large enough to account for the incon- 
sistencies. 

5. Conclusion 

The theoretical basis for determining the internal 
strain in zinc-blende-structure materials has been 

presented and earlier work on gallium arsenide has 
been shown to have been inadequately analysed. 
Reanalysis in the manner of the present paper reveals 
strange inconsistencies. 

I am grateful to Leif Gerward of the Technical 
University of Denmark for supplying the dispersion 
corrections. 
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Abstract 

The propagation of neutron waves in a deformed 
crystal is considered from the point of view of quan- 
tum mechanics. Instead of solving the Takagi-Taupin 
equations the probability of transitions, induced by 
the variation of the interaction potential, between 
quantum states corresponding to the two sheets of 
the dispersion surface is calculated. In this way trans- 
mission and reflection coefficients for an incident 
plane wave are obtained after a simple analytical 
calculation for a wide class of crystal deformations. 
The predictions of this theory are found to be in 
agreement with direct solutions of the Takagi-Taupin 
equations as well as with the experimental results. 

I. Introduction 

A large number of papers have appeared in the last 
two decades confined to the theoretical treatment of 
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dynamical diffraction phenomena in deformed crys- 
tals. Starting from the pioneering works of Penning 
& Polder (1961) and Kato (1964) the theory has 
developed considerably after the amplitude-coupling 
equations for the propagation of the transmitted and 
reflected beams were formulated by Takagi 
(1962, 1969) and Taupin (1964). These equations, 
however, can be solved analytically only in the case 
of crystals with a constant strain gradient - for a 
complete treatment including an exhaustive list of 
references one should consult the paper of Chukhov- 
skii & Petrashen (1977). The solution is a degenerated 
hypergeometric function being rather complicated for 
practical integrated intensity evaluation. Although a 
simplified asymptotic expression for the wave ampli- 
tudes is available, little insight into the process of 
wave propagation is obtained from this solution. 

The theory of neutron diffraction by deformed crys- 
tals has been simply adopted from the X-ray literature 
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